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In unified field models all observable (elementary and nonelementary) particles are assumed to 

be bound states of elementary unobservable fermion fields. Such models are formulated by self-
regularizing higher order nonlinear spinor field equations with indefinite metric. The latter needs 
a careful investigation of the corresponding state space, in particular with respect to bound states. 
Based on preceding papers the general analysis of the state space is further developed in the 
framework of a relativistic energy representation in Part I. In Part II this formalism is applied to 
bound states of the two-fermion sector for a simple model. By direct calculation it turns out that 
for very heavy masses of the constituent fields bound states with positive norm and small masses 
are possible, i.e., that the two-fermion sector allows a meaningful physical interpretation. 

3. Two-fermion sector equations 

The use of state vector representat ions (2.1) or 
(2.4) resp.. requires special me thods for their ex-
plicit calculation. Such me thods are systematically 
provided by functional q u a n t u m theory, cf. [22], In 
connection with the investigation of the metrical 
structure of the state space, in part icular , a calcula-
tion method is needed which is the funct ional 
analogy to the Schrödinger representat ion of 
ordinary quan tum mechanics. A corresponding 
method was developed in a preceding pape r by 
Grosser et al. [19] as a general izat ion of a me thod 
for treating the anha rmon ic oscillator [25] to the 
case of unified models. With respect to details we 
refer to this paper . In our s impli f ied version of a 
unified field model the basic equa t ion of this 
method is given for the state funct ional (2.4) by the 
expression 
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where a = (a, k) is a combined spinor-superspinor 
index, V the superspinor vertex to V and G° and 
© := (G\ G2, G3) the superspinor Di rac matr ices 
and 

dß{x):=Z [ f y ( x ) + iFrw(x-x')/r(x')d3x']. (3.2) 
r— I 

In (3.1) the limiting process to equal t imes was 
already performed according to [25]. Hence this 
equation can be considered as a funct ional ana logon 
to the Schrödinger equat ion and it can be used as 
the starting point of our investigation. In contrast to 
ordinary quantum mechanics the two-fe rmion 
sector is, however, characterized not only by the 
particle core of two interacting e lementary fe rmions 
but also by a polarizat ion cloud of increasing 
numbers of fermion-ant i fermion pairs as can be 
seen from an evaluation of (3.1) with (2.4). 

The investigation of the full polar izat ion cloud is 
far beyond our present mathemat ica l knowledge 
about such equations. Hence we can only discuss 
appropriate approximations. In this pape r we there-
fore restrict ourselves to the discussion of the core 

(3.1) 
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of the two-fermion states neglecting the inf luence of 
the polarization cloud completely. T h e core of the 
two-fermion states can be described by the func-
tional states 
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and the corresponding "d iagona l" approx imat ion of the funct ional equa t ion (3.1) then reads 
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with 

Wy.ßyö : = ^ißyd Fr//?«5 + ^<5/? . (3.5) 
r r' 

From this equat ion the set of equat ions for the state ampl i tudes (p(r, r') of (3.3) can be der ived by projec-
tions. This was done in [19], and we will not repeat this here, as the representa t ion (3.3) is not a p p r o p r i a t e 
for our intended investigation. In order to obtain such an a p p r o p r i a t e representa t ion we apply a canonical 
t ransformation to our source operators which is def ined by the relat ions 

f ( r ) = 2~U2Ul (r) + y 2 ( r ) ] ; a»(r) = 2"1/2[Ö> (r) + S 2 ( r ) ] ; 

f ( r ) = 2 - 1 / 2 [ / ' (r) - / ( r ) ] ; 8*(r) = 2"1 / 2[Ö' (r) - ö 2 ( r ) ] . (3.6) 

By means of this t ransformat ion the state functional (3.3) can equivalent ly be writ ten 

3> = 1 to (r, h A (r)A' ('') + <P h Ji (r)j(#•') 
i J' i i' 

+ (p(/r,hjx*(r)ji'(r') + (p(r, h j* (r)j^(r')] 0 > d 3 / - d V (3.7) 
i i' a a' 

and (3.4) goes over into the equat ion 

E \ 3 > = f ji(x) G°ea [i®aß • V - 1 (m, + m2) S,ß] dQ
ß(x) d3.Y | 

+ G°a [/©.,•• V - j (m, + m2) d,ß] dx
ß(x) d3x | g > (3.8) 

+ T (m\ — mi) [J;S(*) d 3 x + \j*(x) G%d0
ß(x) d3.v] 3 > 
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with F: = F 1 + F 2 and A : = F 1 — F2 . If we now project by 

( 0 0?(i ') 0v'(1 ' ') o r b y <0 [0 v (*') 0 ?' ( r ' ) + 0 ̂  (t') 0 v' (i'')] o r b y <0 0 * ( f ) 0?- ( r ' ) , 

resp., we obtain with the defini t ion of the ant i symmetr ic func t ion 

e x x Q 
%(r, r') := cp(r, r') + (p(r, r') (3.9) 

ß fr p ß' ß ß' 

the system of state equat ions (af ter changing t>-> r, v' -> r') 

e e 
Zißv'ß- (r, r') cp (r, r') - Mvßv>ß> a (r, r') = 0 , (3.10) 

ß ß' ß ß' 

Zvßvß' (r, r ' ) a (r, O - 2 Mvßvß- <p (r, rO - 2 Mvfwß- <p (r, h 
p ß' ß ß' ß ß' 

- Kßv'ß' (r, r ' ) <p (r, r ' ) - F v T v / J ( r \ r) (p (r, r) = 0 , (3.11) 
ß ß' ß ß' 



(3.12) 
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Zrpv-p (/*. r') tp (r . r') - Mvßv>ß> a (r , r') - Wvßvß' (r. r ) <p (r . r ) - WVpvß{r', r) y (r\ r ' ) = 0 , 
ß ß' ß ß' ß ß' ß ß 

where the following abbrev ia t ions are used 

Zvßv'ß> (r, r ' ) : = G?X[/<5X/J • V r - \ (m, + m2) öxß] <V/r 

+ ö v ß G y ' X [ i ( 5 x ß ' • Vr< - j ( m i + w 2 ) <5x/r] - £<5v/? <5v</?<. 

M\ßvß' ••= T (rn2 -mi) [övß G%' + G?/? <5^-], 

(3.13) 

(3.14) 

Kßv'ß' {r. r'):=g — W^xßß' Fxv< (r - r'), 

Wvßv'ß' (r, r ' ) : = g y G?* W^ßpAxV (r - r') . 

Fur the rmore it is convenient to de f ine 

a (r. r ' ) ; 
e e 

<Pi:= (p(r.r') <p 2 := 

x x 
p 3 : = p ( r , r ' ) . (3.17) 

Then (3.10), (3.11), (3.12), can be wr i t ten in an 
abbreviated notat ion as 

3<Pi- sDi(P2 = 0 , 

- an + 3 ^ 3 = 0 . (3.18) 

This system can be resolved with respect to cp\. T h e 
resolution yields 

9i = W l 3 < p u (3.19) 

and leads to the equa t ion 

+ 4 - 3 a r 1 « + 3B)Pi = 0. 

(3.20) 

(3.21) 

The functions (3.17) are the r igh t -hand s ide solu-
tions of (3.8). The le f t -hand s ide solut ions of (3.8) 
can be gained by an ana logous p rocedure . W i t h o u t 
repeating this p rocedure for the l e f t -hand state 
functional and its projec t ions we can s imply s tudy 
the lef t -hand solut ions of (3.18). This leads to the 
system 

o] 3 - 02 ( 2 a n + 33) - (J3 £ 0 = 0 , 

- <7,901 + <7 23 - <73 2R = 0 , 

-CT 2 2 S JR + < 7 3 3 = 0 . ( 3 . 2 2 ) 

<72 = <733 j a r 1 , 

^ = l ] , 

and for er3 the equat ion 

+ - j 3 a R _ I 3 3 + 2B] = 0 

(3.15) 

(3.16) 

An analogous resolut ion p rocedure yields 

(3.23) 

(3.24) 

(3.25) 

i.e. <73 and cp\ are the lef t -hand and r igh t -hand 
solutions, resp.. of the opera to r 

(3.26) 

According to (2.24) the norm of a co r r e spond ing 
eigenstate in the representa t ion (3.3) and the cor-
respondig representat ion of the l e f t -hand state func -
tional < 3 is given by 

a> = < S ( f l ) 5 ( a ) ) 

3 

= X j V , ( r , r ' ) p , ( r , r ' ) d V d V . (3.27) 
/= 1 P P P P' 

If the relations (3.19), (3.20) and (3.23), (3.24), a re 
substi tuted in (3.27) this expression goes over into 

(a a) = \ <<73 [3 a r 1 3 a i r 1 + 3 a r 1 a i r 1 3 (3.28) 

+ an~13 an-' 3 - 4 - an-' 

In the following section we will s tudy this n o r m 
expression as well as energy e igenvalues for b o u n d 
states a ) . 



4. Two-fermion bound states states. Then (4.5) yields 

As indicated at the beginning it is our aim to 
describe all real, i.e. physical elementary particles as 
bound states of e lementary fermions. In part icular 
in subquark models these elementary fermions are 
not allowed to occur as free observable particles; 
rather they have always to be restricted to occur 
only in bound states. This means that all e lementary 
fermions of unif ied field models, namely ghost 
particles as well as regular particles have to be con-
fined. A simple way to achieve such a conf inement 
consists in giving the e lementary fermions very large 
masses. Then the quest ion arises: Do meaningful 
physical bound states exist in spite of the very large 
masses of the consti tuent fermions? 

We will study this quest ion for the two-fermion 
sector. Two-fermion sector bound states are to be 
derived as bound state solutions of (3.21) or (3.25) 
resp. We first show that the corresponding opera tor 
(3.26) is hermi t ian for bound states under confine-
ment conditions. As 3 + = 3 a n d 9ft+ = sHi holds, the 
hermiticity of D depends on the propert ies of 35 
and SXB. It is sufficient to study the 93-term as the 
investigation of the s2ß-term runs along the same 
lines. Due to the translat ional invariance of (3.21) or 
(3.25) resp., it is first possible to split off the center 
of mass mot ion by the ansatz 

ot (r, #•') = exp [/ P (r + #•')] a, (r - r') (4.1) 

and 

(Pi (r, r') = exp [ - iP • \ (r + r')] <Pi (r - #•'). (4.2) 

This gives for (3.27) the expression 
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<p\a> = &(P-P')I,S*i(y)h(y)*3y (4-3) 
/=i 

with y : = r — r ' . Hence the hermitici ty of T> needs 
only to be studied in the relative coordinate y. In 
these coordinates 3 = 3 goes over into 
3 ( P , Without loss of generality we may assume 
P= 0 and obtain by applying 3 9 3 to a test func-
tion g the expression 

3 9 3 0 = 3 ( 0 , % ) 93 ( J ) 0 ( O ) (4.4) 

i.e. 

</3 = J / C f ) x 3 (0, V,) 93 (y) g (0) d3>-. (4.5) 

We now expand /*(>') in a Taylor expansion about 
y = 0 which can be assumed to exist for bound 

</Z®9>= Z - 1 Cr • /(->'*) >=0 
«=0 n\ 

• 3 (0. %) 93 (>•) g (0) d3v . (4.6) 

If we assume that (>•) = 9 3 ( » + , then 3 $ is her-
mitian if the relation 

< / 3 ® 0 > * I / ( 0 ) x 3 (0. V,) 93 (y) g (0) d3v (4.7) 

holds, i.e. if 

n= 1 nl 

• 3 ( O , % ) 9 3 ( j ) 0 ( O ) d V % O (4.8) 

is valid. Such a condit ion is satisfied if the masses 
mi and m2 of both consti tuent f ields are very large. 
Then 93 (>') or 3 (0- %) 93 (>') are so concentrated 
about the origin >' = 0 that all h igher m o m e n t a in 
(4.6) can be neglected. The same holds for 5B. 
Hence hermiticity of T is guaranteed if confinement 
of the elementary fermions is forced by very large 
masses of the consti tuent fields. In this case, i.e. for 
T' = X ,+ we have for real energy eigenvalues 
<73 = ^ a n d the norm expression (3.28) reads 

(a\a) = i < ^ n 3 ^ " , 3 W - 1 + 39CR- 1 $R- 1 3 (4.9) 

+ a r 1 3 s r , 3 - 4 - a r 1 « ] ? , ) . 

We postpone the fur ther evaluation of this expres-
sion and next discuss the corresponding eigenvalues. 

In order to avoid all complicat ions with the 
spinorial degrees of f r eedom we treat the cor-
responding scalar model for a first or ientat ion. This 
model is realized by the subst i tut ions 

3 [E2 + Ar + A/ — -j (m\ + ml)], 

-* -j (m\ — m}) =: x; n:=\{m\+ mj), 

93 gl]d(r-r'), 

kx (m\- m ? ) " 1 , (4.10) 

where 3 results f rom p2 = m2. Wi th these substi-
tutions the Four ier - t ransform of (3.21) then reads 

- (E2 p2 p'2 p) 

1 1 
•2 „2 

2 (E~ — p~ — p z~p) fa (P, P') 

p'2- p) (P~S P' + s)d35 

+ kSfa(p-s,p' + s )d 3 5 = 0 . (4.11) 

2 x 



If center of mass coordinates are in t roduced by 

z = \ ( p + p'); q = p-p' (4.12) 

the wave funct ion can be wri t ten 

<Pi(p.p') = ö(P-2z)(p(q), (4.13) 

and with this subst i tu t ion equa t ion (4.11) reads in 
the rest system, i.e. for P = 0 

2 (E2 P) ( . E 2 - q 2 - p Y 

- ] - - k ( E 2 - q 2 - p ) \ ( p ( s ) d 2 s 
4 x 

-jS<p(s)d3s = 0. 

<p(q) 

(4.14) 

The corresponding eigenvalue condi t ion is given by 
the relation 

1-A.f x(E2-q2-p) + 4x2 

J 8x2(E2-q2-p)-4(E2-q2-p)3 q 

=:J{E). (4.15) 

We now assume that m, and m2 tend in such a way 
to infinity that x 1 holds. T h e n we subst i tu te 
p — E2 = a2 and app rox ima te for a2 > 1 the right-
hand side of (4.15) by 

/ ( £ ) % - * J d3q . (4.16) 
4 (q- a 2 ) 2 

This approximat ion is jus t i f ied insofar as for a2 > 1 
the first term in the d e n o m i n a t o r of J (E) in (4.15) 
can be neglected compared with the second term. 
The restriction a 2 > 1 does not inf luence the 
physical state space of our equat ion . If we had an 
eigenvalue E2 leading to a2 < 1, this would m e a n 
that E2 ^ 4 (m 2 + w 2 ) , and in this case the b o u n d 
state would be suppressed in the physical world in 

the same way as the e lementary f e rmion states do . 
i.e. this state would never a p p e a r in any react ion 
due to its large mass. 

Hence the approximat ion (4.16) is valid for all 
physical states. With this a p p r o x i m a t i o n J (E) can 
exactly be calculated and gives 

h l 1 3 1 
(4.17) 

with 5 ( - j , - j ) > 0. Hence the e igenvalue equa t ion 
(4.15) yields" 

E = [m- (k x)2 j B2}11/2 = \m - g2 x 4 B 2 \ . (4.18) 

For small x-values, x~2 becomes very large and 
hence can compensate the large / M e r m . T h e r e f o r e it 
is possible to obta in bound states with low masses 
although the constituent masses of the b o u n d ele-
mentary fermions are very large. It can fu r the r be 
shown by means of (4.9) that such states possess a 
positive norm. i.e. that they must be physical states. 
In our approximat ion equat ion (4.14) s imply reads 

(E2- q2 - p)2 <p(q) + xk\(p (s) d3s = 0 . (4.19) 

From this equat ion it follows tha t the compensa t ion 
of the large //-term does not result f r o m the kinet ic 
energy. Rather it comes f rom the potent ia l t e rm 
which is porport ional to x~l. Hence the k inet ic 
energy can be neglected in compar i son with the 
constituent mass terms and the potent ia l energy. If 
we transer this result to the spinorial case, we m a y 
replace 3 simply by 

,2 -2 >2-il/2 

3 (nu + m 2 ) [G%öV 'ß '+ö vpGQ
v TJ 

= : - 4 (m\ + m2) G . (4.20) 

Then with sJJf = j (m2 - m\) (£ we ob ta in f r o m (4.9) 

(a a) 
(mi + m2y 

(m2 - m i ) ' 
3 - 4 

(m2—mi)2 1 

(mi + m2)2 (nil + m2)2 (m2 —mi <P l 

(nil + mi) 

(m2 — mi) 2
 3 (<p* (p\) > 0 (4.21) 

i.e. under conf inement condi t ions the norm of the constant g can be fixed in a sui table way. But this 
bound states is positive. In addi t ion the coupl ing possibility will be discussed in subsequent papers . 


