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In unified field models all observable (elementary and nonelementary) particles are assumed to
be bound states of elementary unobservable fermion fields. Such models are formulated by self-
regularizing higher order nonlinear spinor field equations with indefinite metric. The latter needs
a careful investigation of the corresponding state space, in particular with respect to bound states.
Based on preceding papers the general analysis of the state space is further developed in the
framework of a relativistic energy representation in Part I. In Part II this formalism is applied to
bound states of the two-fermion sector for a simple model. By direct calculation it turns out that
for very heavy masses of the constituent fields bound states with positive norm and small masses
are possible, i.e., that the two-fermion sector allows a meaningful physical interpretation.

3. Two-fermion sector equations

The use of state vector representations (2.1) or
(2.4) resp., requires special methods for their ex-
plicit calculation. Such methods are systematically
provided by functional quantum theory, cf. [22]. In
connection with the investigation of the metrical
structure of the state space, in particular, a calcula-
tion method is needed which is the functional
analogy to the Schrdodinger representation of
ordinary quantum mechanics. A corresponding
method was developed in a preceding paper by
Grosser et al. [19] as a generalization of a method
for treating the anharmonic oscillator [25] to the
case of unified models. With respect to details we
refer to this paper. In our simplified version of a
unified field model the basic equation of this
method is given for the state functional (2.4) by the
expression

In (3.1) the limiting process to equal times was
already performed according to [25]. Hence this
equation can be considered as a functional analogon
to the Schrodinger equation and it can be used as
the starting point of our investigation. In contrast to
ordinary quantum mechanics the two-fermion
sector is, however, characterized not only by the
particle core of two interacting elementary fermions
but also by a polarization cloud of increasing
numbers of fermion-antifermion pairs as can be
seen from an evaluation of (3.1) with (2.4).

The investigation of the full polarization cloud is
far beyond our present mathematical knowledge
about such equations. Hence we can only discuss
appropriate approximations. In this paper we there-
fore restrict ourselves to the discussion of the core

E =2 [j1x)Gh(i G-V —m,dyp) 05(x)d |FD
r=1

+g it JUE(®) =2 (0)] G Vapysdg (x) dy (x) ds(x) dX [F),

where o = (2, k) i1s a combined spinor-superspinor
index. V the superspinor vertex to ¥ and G° and
% :=(G'.G* G%) the superspinor Dirac matrices
and

dg(x):= D [05(x) + [ Fpp (x — x) j5 (x")d’x]. (3.2)
r=1

* References see Part I, 38a, 1064 (1983).
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(3.1)

of the two-fermion states neglecting the influence of
the polarization cloud completely. The core of the
two-fermion states can be described by the func-
tional states

Fi= 2 Tewr,rjumnjy @) 0ydrdr
rr=1,2 x
(3.3)
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and the corresponding “diagonal” approximation of the functional equation (3.1) then reads

E )= Zl §75(x) GG(i Grup- V — m, 8,p) Of(x) d°x F)

(3.4)
2 2 2
+g it UL ) =2 ()] GLWaps | D Fhp(x— x’)jfx'(x’)] [Z asm] [Z 95(x) | dPx d’x" | F)
r=1 r=1 r=1
with
Wapss:= Vapso— Vayps+ Vayo (3.5)

From this equation the set of equations for the state amplitudes w(tr‘, ;’) of (3.3) can be derived by projec-
tions. This was done in [19], and we will not repeat this here, as the representation (3.3) is not appropriate
for our intended investigation. In order to obtain such an appropriate representation we apply a canonical
transformation to our source operators which is defined by the relations

=200+ M) 8% =270 () + 3} (N];
FO =2 -2 0]; 34 (r)=2""2[3' () - 3*(n)]. (3.6)

By means of this transformation the state functional (3.3) can equivalently be written
oo . p e, . N
F=1lo(r. r) j8()j§ )+ o(r F) jS(P) j4 ()
a o a o
X e .y . Xz P,
+o(rr) j5n) () + o 1) ji(r) j4 (r)]10) d*r & (3.7)
a o a o

and (3.4) goes over into the equation

E|§)=1j2x) GL[iGyy- V — % (m) + my) 8,5) 0f(x) d°x |F)
+ [ j5(x) GL[iGnp- V — 5 (my + my) 8,5 0% (x) d°x | F) (3.8)
+ 5 (my — m) [[j2(x) G2 0% (x) dx + [ j%(x) G205 (x) d°X] | &)

32
+g a—l §74(%) Gox Woapys[Fpp (x — X7) jB () + A g (x = x7) jyr (x7)] 85 (x) 8§ (x) d’x dx” | )

with F:= F'+ F? and 4 := F' — F2 If we now project by
O0ld2()d%(r)) orby <(0[0%(r) 0% (v')+d%(r)d%(v)] orby <0 9%(r)df ().

resp., we obtain with the definition of the antisymmetric function

o x 1 e
a(r,r')y:=o(r,rY+o(r,r) (3.9)
BB BB BB

the system of state equations (after changing v— r, v’ — r’)

x

o
Zupvp (r,r) o ( ,f) — Mygyp o (ﬁ’,ﬂ'j') =0, (3.10)

=

0o 71
Zygep(rr)a(r,r)=2Mypep o(r, 1) —2Mgep @ (r.r)
BB BB BB

e e o 0
— Vigvp (nP) o (r, ') = Vigrp(r',r) o(r, r) =0, (3.11)
avp ( )‘ﬂﬂ = Bvp 2
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i x K ’ , o , e, @
Zipeg (v o(r . r')y—Mypepo(r,r’)— Wygep(r,r')yo(r.r)—=W,pp(r',.r) o, r)=0,
BB BB BB BB

where the following abbreviations are used
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Zopep (1) = GG 5+ Vo — 5 (my + m3) dug) dvpy

+ 05 GUi Gy Vo — 5 (my + m2) dup] — Edup dvpr.

‘M\-[gr'/;' = ‘:]1— (my—my) [5‘.5(;?',9' = G?ﬂ 6\.'5'] 5

42
7 " a .
[/\‘/i\"lf'(r‘ r ) =g 7 G?z W,,(ﬂﬁ'F,ﬂ.l (r— r ) 3

12
"4 /LI ’
Wopwp (rr') =g B} G, Waspp Ay (r—r').

Furthermore it is convenient to define
Q QI ’
pri=p(rr’). gp=a(rr),

% %
p3:=o(r.r’). (3.17)
Then (3.10). (3.11), (3.12). can be written in an
abbreviated notation as
301 —=Mp,=0,
—C2M+B) o1+ 30— 2Mp3;=0,

—Wo,—Mey+ 303=0. (3.18)

This system can be resolved with respect to ¢;. The
resolution yields

p=M '3, (3.19)
p3= (-1 -7 M'B+ M IIM'J) 1.
(3.20)
and leads to the equation
23-33M'IM'3
+33M'B+ W), =0. (3.21)

The functions (3.17) are the right-hand side solu-
tions of (3.8). The left-hand side solutions of (3.8)
can be gained by an analogous procedure. Without
repeating this procedure for the left-hand state
functional and its projections we can simply study
the left-hand solutions of (3.18). This leads to the
system

0'13—(73(2‘1]34-%)—0'3%:0.
- M+0,3—0:M=0,

—0'32‘))?4‘0'33:0. (322)

(3.12)
(3.13)
(3.14)
(3.15)
(3.16)
An analogous resolution procedure yields
or=0333 M, (3.23)
o=+ 3M'IM!' 1], (3.24)
and for a3 the equation
523 -73M'IM'3
+23MIBV+ W =0 (3.25)

iie. o3 and ¢, are the left-hand and right-hand
solutions, resp.. of the operator

D:=[23-33M'3M' 3

+33M B+ W). (3.26)
According to (2.24) the norm of a corresponding
eigenstate in the representation (3.3) and the cor-
respondig representation of the left-hand state func-
tional (& is given by

(a a)y=<E(a) F(a))

3

=Y [orrorr)drd .
i=1 pB s B

(3.27)

If the relations (3.19). (3.20) and (3.23), (3.24), are
substituted in (3.27) this expression goes over into

(a a@y=1{([3M'3M "+ 3M'M'3  (3.28)
+MI3M '3 —4—M'Blg).

In the following section we will study this norm
expression as well as energy eigenvalues for bound
states a).
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4. Two-fermion bound states

As indicated at the beginning it is our aim to
describe all real, i.e. physical elementary particles as
bound states of elementary fermions. In particular
in subquark models these elementary fermions are
not allowed to occur as free observable particles;
rather they have always to be restricted to occur
only in bound states. This means that all elementary
fermions of unified field models, namely ghost
particles as well as regular particles have to be con-
fined. A simple way to achieve such a confinement
consists in giving the elementary fermions very large
masses. Then the question arises: Do meaningful
physical bound states exist in spite of the very large
masses of the constituent fermions?

We will study this question for the two-fermion
sector. Two-fermion sector bound states are to be
derived as bound state solutions of (3.21) or (3.25)
resp. We first show that the corresponding operator
(3.26) is hermitian for bound states under confine-
ment conditions. As 3% = 3 and M* = M holds, the
hermiticity of © depends on the properties of B
and 2. It is sufficient to study the B-term as the
investigation of the IW-term runs along the same
lines. Due to the translational invariance of (3.21) or
(3.25) resp., it is first possible to split off the center
of mass motion by the ansatz

ai(r,r)=exp[iP- 5 (r+r))&(r—r) (4.1)
and
gi(r,r)=exp[— iP5 (r+r)]pi(r—r). (4.2)

This gives for (3.27) the expression
3
{alay=6(P—P) Z] Te:m e dy  43)

with y:=r—r". Hence the hermiticity of ® needs
only to be studied in the relative coordinate y. In
these coordinates 3 =3 (V,,V,) goes over into
3(P,V},). Without loss of generality we may assume
P=0 and obtain by applying 3B to a test func-
tion g the expression

3Bg=3(0.V,) B(»)g(0) (4.4)
ie.

F3Bg>=[11*3(0.V)B(») g0)d’.

We now expand f*(y) in a Taylor expansion about
y=0 which can be assumed to exist for bound

(4.5)
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states. Then (4.5) yields
. < i
f3Bgy=2 o T0 %" 07 -0
30, BgO)dy.  (46)

If we assume that B (y) = B(»)*, then 3B is her-
mitian if the relation

F3Bg) = [£(0)*3(0.V,) B(y)g(0)d’ (4.7)
holds, i.e. if
=1
MR (LRI (S
300,V B () g (0)dy =0 (4.8)

is valid. Such a condition is satisfied if the masses
m; and m, of both constituent fields are very large.
Then B(y) or 3(0,V,) B(y) are so concentrated
about the origin y =0 that all higher momenta in
(4.6) can be neglected. The same holds for IB.
Hence hermiticity of ® is guaranteed if confinement
of the elementary fermions is forced by very large
masses of the constituent fields. In this case, i.e. for
D=D" we have for real energy eigenvalues
03 = ¢iand the norm expression (3.28) reads

(alay=3{p[3M'IM"' + 3M'M'3 (4.9
+MIIM I3 -4—M'Blo,).

We postpone the further evaluation of this expres-

sion and next discuss the corresponding eigenvalues.

In order to avoid all complications with the

spinorial degrees of freedom we treat the cor-

responding scalar model for a first orientation. This
model is realized by the substitutions
3B+ 4,4 40— 5 (mi+ md)],
m %%(mﬁ—m%) =%, U :=%(m%+ m3) ,
Bogité(r—r),
A= (mi—mi)™, (4.10)

where 3 results from p?=m?’ With these substi-
tutions the Fourier-transform of (3.21) then reads

2=

11 8 g i )
52 (E*=p*—p?— )Y o1 (p.P)
11 : , i ,
g — kK(E*=p=p*=w) [0 (p—s.p +5)d’s

+kfp(p—s.p +5d>s=0. (4.11)
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If center of mass coordinates are introduced by

t=3(p+p): q=p—p (4.12)
the wave function can be written
a1(p.p)=0(P-22)0(q), (4.13)

and with this substitution equation (4.11) reads in
the rest system, i.e. for P= 0
1

D bl l ~
2(E“—q“—/t)—7;(E2—q2—#)3 ?(q)
11

T KE == [o(9d’s

S Tewds=0. (4.14)

The corresponding eigenvalue condition is given by
the relation

I=k| T 7] 2 2 3
T8 (B - - w)—4(E -¢— )
=:J(E).

We now assume that m, and m, tend in such a way
to infinity that »x <1 holds. Then we substitute
u— E*=a* and approximate for a>> 1 the right-
hand side of (4.15) by

J(E)=—k |

5 2 )
#(E?—¢*— ) +4x &g

(4.15)

o 3
e+ D) d’q . (4.16)
This approximation is justified insofar as for a* > 1
the first term in the denominator of J(E) in (4.15)
can be neglected compared with the second term.
The restriction @*>1 does not influence the
physical state space of our equation. If we had an
eigenvalue E’ leading to a* < 1, this would mean
that E?~ + (m}+ m3), and in this case the bound
state would be suppressed in the physical world in

(a ay=
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the same way as the elementary fermion states do,
i.e. this state would never appear in any reaction
due to its large mass.

Hence the approximation (4.16) is valid for all
physical states. With this approximation J(E) can
exactly be calculated and gives

k1 3 1
JE)y=————B|=, = 4.17
®--22 1835 @17)
with B(%.iz) > 0. Hence the eigenvalue equation
(4.15) yields

E=[u—(k»*5 B =[u—g*x 5B, (418)

For small »-values, » > becomes very large and
hence can compensate the large u-term. Therefore it
is possible to obtain bound states with low masses
although the constituent masses of the bound ele-
mentary fermions are very large. It can further be
shown by means of (4.9) that such states possess a
positive norm, Z.e. that they must be physical states.
In our approximation equation (4.14) simply reads

(E =@ —1)*p(q) +xk [ p(s)d’s=0. (4.19)

From this equation it follows that the compensation
of the large u-term does not result from the kinetic
energy. Rather it comes from the potential term
which is porportional to » . Hence the kinetic
energy can be neglected in comparison with the
constituent mass terms and the potential energy. If
we transer this result to the spinorial case, we may

replace 3 simply by
3x =5 (m+m)[Glsdyp+6,Glyl
= —é— (my +my) €. (4.20)

Then with M = % (my — m;) € we obtain from (4.9)

1

(m|+m2)2 <(P)l([3_4 (mz_ml)2 _

(my — m)? (m) + m»)?

m + mr 2
e R

e 7
(my—my)”~

i.e. under confinement conditions the norm of the
bound states is positive. In addition the coupling

(my + ma)* (my— my)

g C'G'm TY] (p1>

(4.21)

constant g can be fixed in a suitable way. But this
possibility will be discussed in subsequent papers.



